Exercice 1:

Complétez le programme python suivant qui permet de créer et initialiser un tableau, puis inverser les éléments.

```
# Saisir la taille actuelle du tableau
N = .....(input("Saisir le nombre d'éléments : "))
# intialiser la taille des tableaux avec N
tab = [...]*(N)
# Saisir les éléments du tableau sourcefor i
in.....(N):
  ......[i]=int(input("Saisir l'élement {0} : ".format(i+1)))
indexArriere = .....
indexAvant = N - 1
..... (indexArriere < indexAvant) :
# inverser le dernier élément avec le premier élément
  temp = tab[.....]
  tab[indexArriere] = tab[.....]
  tab[....] = .....
# incrémenter l'index du premier élément et décrémenter l'index du dernier élément
  .....+=1
  indexAvant - = 1
# Afficher le tableau après avoir supprimé les éléments en double
for i in range(N):
 print(tab[ .....] ,end= " , ")
```


Exercice 2:

Compléter le tableau suivant par l'instruction algorithmique, en python, la valeur et le type de x :

	Instruction algorithmique	Instruction En python	Valeur de x	Type de x
1	$x \leftarrow (15 + 6 + 1) * 2 + 5.$	x = (15 + 6 + 1) * 2 + 5.	ue x	float
2	x ← 1-2+3.			
3	x← long("Python") div 2	34		
4	x← (4*5*6*7*0*3) + 15			
5	x← non (ord("A") > ord("a"))			
6	x← 21 - 7 * Ent(2.75)	TADRIS.TH		
7	x← Aléa(1,100) > 120			
8	x← (10 ≠ (9+1)) ou (12 > -1)			
9	x← Ent (Abs(- 3.75)) / 2			
10	x← Chr(Ord("a")-32) +Majus("b")			

Exercice 3:

Soit l'algorithme de la fonction "travail" suivant :

- 0) Fonction Travail (N: entier):
- 1) $R \leftarrow 0$
- 2) Répéter

$$R \leftarrow R + N \mod 10$$

Jusqu'à (N=0)

- 3) Retourner (R)
- 4) Fin travail

Travail à faire:

- 1- Compléter par le type de résultat retourné par la fonction travail.
- 2- Compléter le Tableau de Déclaration des Objets Locaux de la fonction Travail.

Objet	Type / Nature		

- 3- Quelle est la valeur retournée par la fonction Travail pour N = 125 Pour N = 125 le résultat =
- 4- Déduire le rôle de la fonction travail.

Exercice 4:

Soit à remplir un tableau T par n caractères (avec $6 \le n \le 30$). Il s'agit de répartir ces n caractères sur trois tableaux et les afficher:

- TL: un tableau de lettres
- TC: un tableau de chiffres
- TS: un tableau de symboles

Exemple:

Soit n = 10

Т	h	4	!	K	}	2	r	\$	8	d
	1	2	3	4	5	6	7	8	9	10

On doit obtenir les tableaux suivants :

Soit n = 10

TL	h	K	r	d
·	1	2	3	4
TC	4	2	8	
	1	2	3	
TS	!	}	\$	
	1	2	3	

Exercice 5:

Soit à saisir les moyennes de n élèves (n < 35) dans un tableau T et leurs noms dans un tableau Nom. Il s'agit d'afficher le nom de chaque élève accompagné de son rang en classe.

Exemple:

Le programme doit afficher :

Gabtni a le rang 4

Sarray a le rang 5

Faleh a le rang 2

Chedly a le rang 1

Chmengui a le rang 3

