SÉRIE SUR LA STRUCTURE DE CONTRÔLE ITÉRATIVE COMPLÈTE, (APPELÉE AUSSI : LA BOUCLE FOR)

EXERCICE 1:

Ecrire un programme qui affiche tous les diviseurs d'un entier donné et leur somme

EXERCICE 2:

Un nombre parfait est un nombre présentant la particularité d'être égal à la somme de tous ses diviseurs, excepté luimême. **Exemple** : 6 est un entier parfait, il est bien égal à 1 + 2 + 3, qui sont ses diviseurs.

Ecrire un programme qui vérifie si un entier donné est parfait ou bien non.

EXERCICE 3:

Ecrire un programme qui affiche tous les nombres parfaits dans un intervalle [a, b], avec a et b sont deux entiers saisis.

EXERCICE 4:

Ecrire un programme qui vérifie si un entier donné est premier ou non. Un nombre est dit premier s'il a exactement deux diviseurs.

EXERCICE 5:

Ecrire un programme qui affiche tous les nombres premiers dans un intervalle [a, b], avec a et b sont deux entiers saisis.

EXERCICE 6:

Un nombre est dit *premier absolu* si toutes les combinaisons de ses chiffres donnent des nombres premiers

Exemple 1:113 est premier absolu, en effet:113,131,311 sont premiers

Exemple 2: 199 est premier absolu, en effet: 199,991,919 sont premiers

Ecrire un programme qui vérifie si un entier de 3 chiffres est premier absolu ou non

EXERCICE 7:

Ecrire un programme qui affiche tous les nombres premiers absolus dans un intervalle [a, b], avec a et b sont deux entiers saisis.

EXERCICE 8:

Ecrire un programme qui lit un réel x non nul et un entier n, puis affiche x puissance n x

EXERCICE 9:

Ecrire un programme vérifie si deux nombres entiers sont amis ou non. Deux nombres a et b sont dits amis, si la somme des diviseurs stricts de a =b et la somme des diviseurs stricts de b =a

Exemple: 220 et 284 sont amis car

- s(220) = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284
- s(284) = 1 + 2 + 4 + 71 + 142 = 220.

EXERCICE 10:

Ecrire un programme qui affiche tous les couples de nombres amis dans un intervalle [a, b], avec a et b sont deux entiers donnés.

EXERCICE 11:

Ecrire un programme qui affiche la somme des chiffres d'un nombre donné.

EXERCICE 12:

Ecrire un programme qui lit une chaine ch quelconque puis extrait et affiche :

Ch1=contenant les chiffres

Ch2= contenant les lettres minuscules

Ch3= contenant les lettres majuscules

Ch4= contenant les autres

EXERCICE 13:

Un mot est dit « palindrome » lorsque on peut le lire de gauche à droite comme de droite à gauche (aziza, été, radar). Ecrire un programme permettant de vérifier si une chaine saisie est palindrome ou non. (Utiliser deux méthodes).

EXERCICE 14:

Ecrire un programme qui lit une chaine puis l'affiche comme indique l'exemple suivant :

Si ch= 'HAMDI_F' alors le programme affiche

Н

HA

HAM

HAMD

HAMDI

HAMDI_

HAMDI F

EXERCICE 15:


Ecrire un programme qui permet de saisir un entier N strictement positif, calculer et afficher la somme S1 S2, S3 et S4.

$$S1=1+2+3+4+....\pm N$$

$$S2=1 - 2 + 3 - 4 + \dots \pm N$$

$$S4=2+4+6+8+....\pm 2N$$

EXERCICE 16:

Sachant que:

$$\sin(x) = \frac{X^{1}}{1!} - \frac{X^{3}}{3!} + \frac{X^{5}}{5!} - \dots \pm \frac{X^{2n+1}}{(2n+1)!}$$

Ecrire un programme qui lit un réel x et un entier n, puis calcule et affiche sin(x) par cette méthode.

EXERCICE 17:

Ecrire un programme qui lit n, puis calcule et affiche cette somme :

$$S = \frac{\sqrt{1}}{2\sqrt{3}} - \frac{\sqrt{2}}{3\sqrt{4}} + \frac{\sqrt{3}}{4\sqrt{5}} - \dots - (-1)^{n-1} \frac{\sqrt{n}}{(n+1)\sqrt{n+2}}$$

EXERCICE 18:

Ecrire un programme qui lit une chaine puis afficher l'occurrence (la fréquence=le nombre de fois) de chaque caractère : Exemple : ch= 'Firas Hamdi' le programme affiche

Α	existe	2 fois
D	existe	1 fois
F	existe	1 fois
Н	existe	1 fois
I	existe	2 fois
M	existe	1 fois
R	existe	1 fois
S	existe	1 fois

EXERCICE 19:

Ecrire un programme qui lit une chaine binaire ou hexadécimale ch et une base B, puis donne son équivalent en décimale.

Exemple 1:

B=2

Ch=' 111000'

Le programme affiche (111000)2 = (56)10

Exemple 2:

B = 16

Ch=' 12AF'

Le programme affiche (12AF)16 = (4783)10

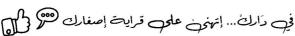
On rappelle la règle de conversion :

Ch=(${}^{\prime}c_4c_3c_2c_1c_0{}^{\prime}$)_B donne (${}^{\prime}c_0.B^0+c_1.B^1+c_2.B^2+c_3.B^3+c_4.B^4$)₁₀

Si la base B =2, ses chiffres sont '0','1'

Si la base B=16, ses chiffres sont '0'..'9', 'A','B','C','D','E','F' c.à.d [10..15] sont remplacés par ['A'..'F']

EXERCICE 20:


Ecrire un programme qui lit un verbe régulier du premier groupe ou de 2° groupe, puis afficher sa conjugaison au passé simple avec toutes les personnes.

Exemple1: verbe='finir' le programme affiche:

Exemple1: verbe='finir' le programme affiche:

Exemple1: verbe	=' penser ' le programme affiche :	Exemple1:	verbe='fi
je	pens ai	je	fin is
Tu	pens as	Tu	fin is
Il/Elle/On	pens a	Il/Elle/On	fin it
Nous	pens âmes	Nous	fin îmes
Vous	pens âtes	Vous	fin îtes
Ils/Elles	pens èrent	Ils/Elles	finirent

