

3^{éme}math

Exercice 1

- I) Donnez la seule réponse exacte :
- 1) La fonction $f: x \to \sqrt{-3x+1}$ est continue en :

a)
$$\frac{1}{3}$$

c) 0

2) la fonction $f: x \to E(-x)$ est continue sur :

a)
$$[2,3]$$
 b) $[2,3[$

- une fonction définie sur un intervalle ouvert I et $a \in I$ 3) Soit
- ,alors est discontinue est:
 - a) nécessairement discontinue à gauche en
 - b) fécessairement discontinue à droite en
 - f c)soit discontinue à **f**aroite en f, soit discontin**g**e à gauche en
- II) Répondre par vrai au faux en justifiant la réponse.
- est continue sur [-1,3] telleque: f(-1)=2 et $f(3)=-\frac{a_1}{2}$ alors l'équation f(x)=1
 - af n'admet pas de solution dans [-1,3]
 - b) admet au moins une solution dans $\begin{bmatrix} -1,3 \end{bmatrix}$
- 2) |f| est continue en si et s**e**ulement si est continue en $\,a$.
- 3) Soit f définie sur [a,b] , $(a \prec^J b)$
 - Si f(a) f(b) < 0 alors l'équation f(x) = 0 admet au moins une solution dans a,b.

Exercice 2:

Justifier la continuité de f sur $oldsymbol{D}_f$.

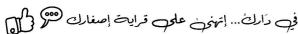
$$f: x \to -x^3 + 2x^2 + 2011$$
 , $x \to \frac{|x^2 - 1|}{|x^4 + 2|}$

$$x \to \frac{\left|x^2 - 1\right|}{x^4 + 2}$$

$$f: x \to \frac{-x^2 + 2x + 5}{x^2 + 1}$$
 , $x \to \sqrt{x + \frac{1}{x}}$

$$x \to \sqrt{x} + \frac{1}{x}$$

$$f: x \to \sqrt{x^2 + 2x - 3}$$



Exercice 3:

Soit la fonction f définie sur

$$\begin{cases} f(x) = 2 + \frac{1}{x+1} & si \ x < -1 \\ f(x) = 2x^2 + x & si \ x \ge -1 \end{cases}$$

- 1) Tracer $oldsymbol{C}_f$ dans repère orthonormé f .
- 2) Montrer que $\int_{\mathcal{L}}$ est continue sur $\int_{|f|} \left] -\infty, -1 \right[et \ sur \] -1, +\infty \left[\right]$
- 3) La fonction $\frac{f}{f}$ est -elle continue sur
-)Tracer ζ_f . f est -elle continue sur
- b)Tracer $\zeta_{|f|}$. Que peut -on conclure?

Exercice 4

Soit
$$f(x) = x^3 - 6x^2 + x + 1$$

- 1) Justifier la continuité de f sur
- 2) a) Montrer que l'équation f(x) = 0 admet au moins une solution $\alpha \, dans \, [0,1]$.
 - b) Vérifier que $\alpha^2 = \frac{\alpha + 1}{6 \alpha}$
- 3) Donner un encadrement de , d'amplitude 0,1 $\alpha^2 = \frac{\alpha+1}{6-\alpha} \alpha dans [0,1] f(x) = 0$

Exercice 5:

Soit $f:[0,1] \rightarrow [0,1]$ une fonction continue sur [0,1]

- Montrer que l'équation f(x) = x admet au moins une solution $\alpha \in [0,1]$
- On suppose que f est strictement décroissante sur $\left[0,1\right]$ Montrer alors que α est unique.

