Matière: Chimie

Série de révision

Exercice n°1:

- I- On donne les nombres de charge des atomes suivant : Mg (Z = 12) ; O (Z = 8) Ne (Z = 10) ;
- 1) Donner pour chaque atome la structure électrique et le nombre d'électrons de valence.
- 2) En déduire leurs schémas de Lewis.
- 3) a- Enoncer les règles du duet et de l'octet.
- b- Lequel des atomes ci- dessus celui qui est stable ? Justifier la réponse. .
- 4) Pour acquérir une plus grande stabilité, l'atome d'oxygène se transforme en un ion.
- a- Selon quelle règle se forme cet ion?
- b- Donner le symbole et la structure électronique de l'ion oxygène obtenu.
- 5- Le symbole chimique de l'ion magnésium et Mg²⁺.

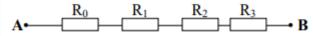
Expliquer la formation de cet ion et préciser la règle satisfaite pour cet ion.

- II-On considère la molécule de l'éthanol de formule chimique C₂H₆O
- 1- Donner la définition d'une liaison covalente
- 2- Donner la définition d'une électronégativité
- 3- Déterminer, pour chaque atome de Carbonne, d'hydrogène et d'oxygène, le nombre de liaison covalente que peut former. Justifier la réponse.
- 3- Quel est le nombre total de doublets dans la molécule C2H6O
- 4- Donner le schéma de Lewis de la molécule C₂H₆O et en déduire le nombre de doublets liants et non liants.

On donne :
$$C(Z = 6)$$
 ; $H(Z = 1)$; $O(Z = 8)$

Exercice n°2:

1. Compléter le tableau suivant :

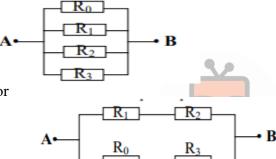

Atome	F(Z=9)	Si(Z=14)	P(Z=15)	O(Z=8)	Cl(Z=17)
Formule					
électronique					
Schéma de					
Lewis					34
Nombre des					00
liaison					TADRIS.TM
covalente					

Physique

Exercice n°2:

On considère quatre résistors de résistances respectives : R_0 = 4,5 Ω ; R_1 = 2 Ω ; R_2 = 3 Ω et R_3 = 2,5 Ω On les associe entre les points A et B de plusieurs manières, en soumettant l'association à chaque fois à la même tension U_{AB} = 6V :

1 er cas: l'association est en série :

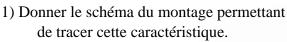

- a) Calculer l'intensité du courant qui traverse chaque résistor
- b) Déterminer la tension aux bornes de chaque résistor

2 ème cas: l'association est en parallèle:

- TADRIS.TN
 - a) Calculer l'intensité du courant qui traverse chaque résisto
 - b) Déterminer la tension aux bornes de chaque résistor
 - c-Déterminer l'intensité du courant qui traverse chaque résistor

3 ème cas: l'association est mixte:

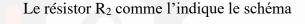
a) Déterminer la résistance équivalente Réq de l'association

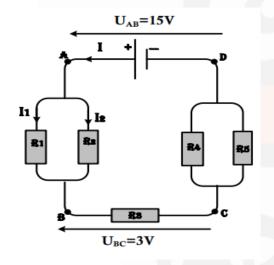

Classes: 2ème années (Sciences

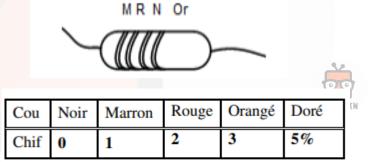
Matière : Chimie

b) Calculer l'intensité du courant rentrant par le point A

Exercice n° 3:


On a représenté sur le graphique ci-après la caractéristique intensité-tension d'un dipôle résistor, tracée lors d'une séance de travaux pratiques.




- 2) Préciser si ce dipôle est actif ou passif. Justifier.
- 3) Déterminer graphiquement la valeur de la résistance R.
- 4) a) Enoncer la loi d'Ohm relative à un dipôle résistor
- b) Sachant que la tension imposée aux bornes de ce dipôle est $U_R = 15V$. Calculer la calculer valeur de l'intensité du courant qui le traverse.
 - c) Retrouver cette valeur graphiquement.
- 5) Calculer la puissance et l'énergie électrique consommée par ce récepteur pendant 25 minutes de fonctionnement en joule.
- 6) En quelle forme d'énergie, ce résistor transforme-t-il l'énergie électrique qu'il consomme ?

Exercice n° 4:

On considère le circuit électrique suivant :

$$R_1 = 4 \Omega$$
; $R_3 = 6 \Omega$; $R_4 = 25 \Omega$; $U_{AD} = 15 V$; $U_{BC} = 3 V$

- 1) Déterminer la valeur de la résistance du résistor R₂.
- 2) a- Ecrire la loi d'ohm relative au résistor R_3 ,
 - b- calculer I.
- 3) a- Déterminer la résistance Req équivalent à R₁ et R₂.
 - b- En déduire la puissance P_{reçue} par les deux résistors R₁ et R₂.
 - c- Calculer la tension U_{AB}. Déduire la tension U_{CD}.
- 4) a- Déterminer la résistance R'_{eq} équivalente à R_4 et R_5 .
 - b- En déduire la résistance R₅.
- 5) Déterminer par deux méthodes la résistance équivalente entre A et D

